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Abstract
An interatomic potential for the Fe–Al binary system has been developed based on the modified
embedded-atom method (MEAM) potential formalism. The potential can describe various
fundamental physical properties of Fe–Al binary alloys—structural, elastic and thermodynamic
properties, defect formation behavior and interactions between defects—in reasonable
agreement with experimental data or higher-level calculations. The applicability of the potential
to atomistic investigations of various defect formation behaviors and their effects on the
mechanical properties of high aluminum steels as well as Fe–Al binary alloys is demonstrated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Manganese–aluminum-carbon steels with high aluminum
contents, which have been regarded as a substitute for
chromium–nickel stainless steels, are now attracting renewed
academic and industrial interest due to their light weight [1].
Since mechanical twinning was found to be the main
deformation mechanism for this class of steels [2], detailed
investigations on the twinning induced plasticity (TWIP)
phenomenon have been carried out [3]. Even though the
stacking fault energy (SFE) is being mentioned as a key factor
in the twinning, because of the difficulty of and uncertainty in
the experimental measurements of the SFE, information about
the SFE in TWIP steels and the effect of alloying elements on
it is very limited.

Aluminum is also characterized as an element that causes
a DO3 or B2 ordering in a wide composition range when
alloyed to iron. It is well known that ordered compounds are
brittle [4, 5]. It is also known that various point defects such
as vacancies and anti-site atoms exist in different proportions
depending on the deviation from stoichiometry in the B2
ordered Fe–Al alloys [6]. Even though it has been observed
that those point defects have a strong effect on the plasticity of
the Fe–Al ordered alloys, more details about the distribution
and role of individual point defects and their clusters in the

1 Author to whom any correspondence should be addressed.

plastic deformation behavior of alloys of various composition
are not known.

In order to further improve the mechanical properties of
high Al steels as a structural material, it would be necessary
to understand the formation behavior of various point defects
and their effects on twin formation at a more fundamental
level. All those are atomic scale phenomena which are
difficult to examine experimentally but which can be best
investigated using atomistic simulation techniques. First-
principles calculations provide the most reliable information
on materials properties at atomic or sub-atomic scales.
However, due to the size (or number of atoms) limit, it
is often not possible to investigate material behaviors using
only first-principles calculations. Another approach is to use
(semi-)empirical interatomic potentials, which can deal with
more than a million atoms. Here, it is important that the
interatomic potential should be able to reproduce correctly
various fundamental physical properties (thermodynamic,
elastic, defect and ordering properties, etc, in the case of the
Fe–Al alloy system) of relevant materials systems.

Because of the importance of atomistic simulation
approaches to the mechanical properties of Fe–Al alloys,
many interatomic potential models have indeed been developed
not only based on pair-potential formalisms [7–10] but also
on many-body potential formalisms such as the embedded-
atom method (EAM) [11, 12] and the modified analytic
EAM [13]. All the many-body interatomic potentials
reproduce fundamental physical properties of the Fe–Al alloys
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reasonably well. However, none of the potentials have been
applied to Fe–C and Fe–Mn systems which should be included
when considering practical Fe–Mn–Al–C systems.

To the best knowledge of the present authors, the second
nearest-neighbor modified EAM (2NN MEAM) [14, 15] is
a unique potential formalism which has been applied to the
relevant elements, iron [15], manganese [17], aluminum [16]
and carbon [18], and their alloy systems, Fe–C [19] and Fe–
Mn [17]. As a starting point to investigate the effect of
aluminum on the defect formation and plastic deformation
behavior in high Al steels (Fe–Mn–Al–C) at an atomic
scale, the purpose of the present work is to develop a 2NN
MEAM interatomic potential for the Fe–Al alloy system.
Special attention was paid to reproducing the structural,
thermodynamic, elastic, defect and ordering properties of the
alloys.

In the present paper, the 2NN MEAM formalism for
alloy systems and the procedure for determining the potential
parameters are briefly outlined. Then, how well the
potential can describe the fundamental physical properties of
relevant materials is demonstrated by comparing the MEAM
calculations with experimental data or other calculations. The
applicability of the present potential for atomistic simulations
to investigate the defect formation and deformation behavior of
Fe–Al alloys is also discussed.

2. Formalism

2.1. Potential formalism

In the MEAM, the total energy of a system is approximated as

E =
∑

i

[
Fi (ρ̄i ) + 1

2

∑

j ( �=i)

Si jφi j(Ri j)

]
. (1)

Fi is the embedding function for an atom i embedded in
a background electron density ρ̄i , and Si j and φi j(Ri j) are,
respectively, the screening function and the pair interaction
between atoms i and j separated by a distance Ri j . For
energy calculations, the functional forms for Fi and φi j should
be given. The background electron density at each atomic
site is computed considering the directionality of bonding,
i.e. by combining several partial electron density terms for
different angular contributions. A specific form is given to
the embedding function Fi but not to the pair interaction
φi j . Instead, a reference structure where individual atoms
are on exact lattice points is defined and the total energy
per atom of the reference structure is estimated from the
zero-temperature universal equation of state by Rose et al
[20]. Then, the value of the pair interaction is evaluated
from the known values of the total energy per atom and
the embedding energy as a function of the nearest-neighbor
distance. In the original MEAM [21], only first nearest-
neighbor interactions are considered. The second and more
distant nearest-neighbor interactions are neglected by the use
of a strong, many-body screening function [22]. Consideration
of the second nearest-neighbor interactions in the modified
formalism (2NN MEAM [14, 15]) is effected by adjusting the

screening parameters Cmin so that the many-body screening
becomes less severe. In addition, a radial cutoff function [22]
is applied to reduce calculation time. Details of the MEAM
formalism have been published in the literature [14, 15, 21, 22]
and will not be repeated here.

To describe an alloy system, the pair interaction between
different elements should be determined. For this, a similar
technique that is used to determine pair interaction for elements
is applied to binary alloy systems. A perfectly ordered binary
intermetallic compound, where one type of atom has only the
same types of atoms as second nearest-neighbors, is considered
as a reference structure. For the Fe–Al system, a Fe3Al-type
L12 ordered structure was chosen as the reference structure.
For the L12 Fe3Al structure, the total energy per atom (for
3/4Fe atom + 1/4Al atom) is given as follows:

Eu
Fe3Al(R) = 3

4 FFe(ρ̄Fe) + 1
4 FAl(ρ̄Al)

+ Z1

2

[
1

2
φFeAl(R) + 1

2
φFeFe(R)

]

+ Z2

2

[
3

4
SFeφFeFe(a R) + 1

4
SAlφAlAl(a R)

]
, (2)

where Z1 and Z2 are the numbers of first and second nearest-
neighbors in the L12 Fe3Al structure, respectively. In the
present case, Z1 and Z2 are 12 and 6, respectively. SFe

and SAl are the screening function for the second nearest-
neighbor interactions between Fe atoms and between Al atoms,
respectively, and a is the ratio between the second and first
nearest-neighbor distances in the reference structure. The pair
interaction between Fe and Al can now be obtained in the
following form:

φFeAl(R) = 1
3 Eu

Fe3Al(R) − 1
4 FFe(ρ̄Fe) − 1

12 FAl(ρ̄Al)

− φFeFe(R) − 3
4 SFeφFeFe(a R) − 1

4 SAlφAlAl(a R). (3)

The embedding functions FFe and FAl can be readily
computed [14, 15, 21, 22]. The pair interactions φFeFe and
φAlAl between the same types of atoms can also be computed
from descriptions of individual elements. To obtain Eu

Fe3Al(R),
the universal equation of state [20] should be considered once
again for the L12 Fe3Al as follows:

Eu(R) = −Ec(1 + a∗ + da∗3)e−a∗
, (4)

where d is an adjustable parameter

a∗ = α(R/re − 1), (5)

and

α =
(

9B�

Ec

)1/2

. (6)

re is the equilibrium nearest-neighbor distance, Ec is the
cohesive energy, B is the bulk modulus and � is the
equilibrium atomic volume of the reference structure. The
parameters Ec, re (or �), B and d in the universal equation
of state are assumed or determined from relevant experimental
data or high-level calculations. The pair interaction between
Fe and Al is then determined as a function of the interatomic
distance R.
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Table 1. 2NN MEAM parameters for pure Fe and Al. The units of the cohesive energy Ec, equilibrium nearest-neighbor distance re and bulk
modulus B are eV, Å and 1012 dyne cm−2, respectively.

Ec Re B A β(0) β(1) β(2) β(3) t (1) t (2) t (3) Cmax Cmin d

Fe 4.29 2.48 1.730 0.56 4.15 1.0 1.0 1.0 2.6 1.8 −7.2 2.80 0.36 0.05
Al 3.36 2.86 0.794 1.16 3.20 2.6 6.0 2.6 3.05 0.51 7.75 2.80 0.49 0.05

2.2. Determination of potential parameters

The MEAM for an alloy system is based on the MEAM
potentials of the constituent elements. In the present work, the
MEAM parameters for Fe and Al were taken from Lee et al
[15, 16] without any modification. The potential parameters
for pure Fe and Al are listed in table 1.

As described in the previous section, the extension of the
MEAM to an alloy system involves the determination of the
pair interaction between different types of atoms. The main
task is to estimate the potential parameters of the universal
equation of state for the reference structure. Equations (4)–(6)
show that the potential parameters are Ec, re (or �), B and d .
The first three are material properties if the reference structure
is a real phase structure that exists on the phase diagram of
the relevant system. Experimental data for that phase can
be used directly. Otherwise, the parameter values should be
optimized so that experimental information on other phases
or first-principles calculation results which are widely used
to obtain fundamental physical and thermodynamic properties
can be reproduced, if available, or assumptions should be
made. The fourth parameter, d , is a model parameter. The
value can be determined by fitting to the (∂ B/∂ P) value of the
reference structure. When the reference structure is not a real
phase, it is difficult to estimate a reasonable value. For such
alloy systems, d is given the average value of those for the
pure constituent elements.

In addition to the parameters for the universal equation
of state, two model parameters, Cmin and Cmax, must be
determined to describe alloy systems. As can be seen in table 1,
each element has its own value of Cmin and Cmax. Cmin and
Cmax determine the extent of screening of an atom (k) to the
interaction between two neighboring atoms (i and j ). For pure
elements, the three atoms are all of the same type (i– j–k =
A–A–A or B–B–B). However, in the case of alloys, one of the
interacting atoms and/or the screening atoms can be different
types (there are four cases: i– j–k = A–B–A, B–A–B, A–A–
B and A–B–B). Different Cmin and Cmax values may have to
be given in each case. Another model parameter is the atomic
electron density scaling factor ρ0. For an equilibrium reference
structure (R = re), the values of all atomic electron densities
become ρ0. This is an arbitrary value and does not have any
effect on calculations for pure elements. This parameter is
often omitted when describing the potential model for pure
elements. However, for alloy systems, especially for systems
where the constituent elements have different coordination
numbers, the scaling factor (relative difference) has a great
effect on calculations.

The 13 model parameters discussed above, Ec, re, B ,
d, Cmin, Cmax and ρ0 (there are four binary Cmin and Cmax

parameters), must be determined to describe an alloy system.

The optimization of the model parameters is performed by
fitting to known physical properties of the alloy system. The
parameter values are determined by a systematic trial and
error method after the relations between individual parameters
and target property values (mostly 0 K values) are found.
Several sets of parameters that equally reproduce the target
property values are obtained. Those parameter sets are used to
calculate thermal properties or properties at finite temperatures
such as stability of equilibrium phases, thermal expansion
coefficients, order–disorder transition, etc, and the best set is
finally selected.

The phase diagram of the Fe–Al binary system is
characterized by a large solubility of Al (up to 50 at.% Al)
in the body-centered cubic (bcc) solid solution. Over 20 at.%
Al, the random bcc solid solution transforms into the B2-FeAl
ordered phase at low temperature. The transition temperature
increases with increasing Al content. At around 25 at.% Al,
the B2 ordered phase further transforms into the DO3-Fe3Al
ordered phase. The experimental physical properties of the
Fe–Al alloys, which are available in the literature and can thus
be used to determine potential parameter values, were lattice
parameters [23–26], bulk modulus and elastic constants [27]
of the above-mentioned ordered and disordered solid solution
phases. Enthalpy of formation and enthalpy of mixing were
also available for the solid [28–30] and liquid [31, 32] solution
phases, respectively. The ordering transition temperature [33]
that changes with composition and the vacancy formation
energy [34, 35] could be considered to determine the
potential parameters or to evaluate the transferability of the
potential. First-principles calculations [36–47] and empirical
calculations using other many-body potentials [11–13] are also
available for various physical properties, and those values
were used mainly for comparison. Even though many other
compound phases are reported on the Al-rich region of the
Fe–Al phase diagram, those phases were not considered in the
present work since their crystal structures were unclear or too
complicated to deal with using an (semi-)empirical interatomic
potential.

The parameter values were determined by fitting to
the above-mentioned experimental information on the Fe–Al
alloys. It has been mentioned that the first three parameters,
Ec, re and B , are material properties (the cohesive energy,
equilibrium nearest-neighbor distance and bulk modulus of the
reference structure, respectively) once the reference structure
is a real phase structure that exists on the phase diagram.
However, since the reference structure selected in the present
study, L12-Fe3Al, was not a real phase structure, the above
parameter values could not be determined directly from
experimental data. The Ec parameter value was optimized
so that the enthalpy of formation in solid phases and the
enthalpy of mixing in the liquid phase are best reproduced
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Table 2. 2NN MEAM parameters for the Fe–Al system optimized in the present work. The units of the formation energy of the reference
phase �Ec, the equilibrium nearest-neighbor distance re and bulk modulus B are eV, Å and 1012 dyne cm−2, respectively.

Selected value Procedure for the determination

Reference state L12-Fe3Al
�Ec(EL12

c − 0.75EFe
c − 0.25EAl

c ) −0.18 Fitting to enthalpy of formation/mixing
re 2.59 Fitting to lattice parameters
B 0.75BFe + 0.25BAl Default assumed value
d 0.75dFe + 0.25dAl Default assumed value
Cmin (Fe–Al–Fe) 0.36 (=CFe

min) Default assumed value
Cmin (Al–Fe–Al) 1.21 Fitting to elastic constants of B2-FeAl
Cmin (Fe–Fe–Al) 1.00 Fitting to elastic constants of DO3-Fe3Al
Cmin (Fe–Al–Al) [0.5 (CFe

min)
1/2 + 0.5(CAl

min)
1/2]2 Default assumed value

ρ0 ρFe
0 /ρAl

0 = 1.0 Default assumed value

simultaneously. Similarly, the re parameter value was
optimized so that the composition dependency of the lattice
parameter of the bcc solid solutions is best reproduced. The B
parameter value could be determined so that the bulk moduli
of ordered phases are best reproduced. However, based on
previous works on the Fe–Ti and Cu–Zr systems [48, 49],
where it was found that the bulk moduli of reference structures
approximated by taking a weighted average of the values for
pure elements are close to first-principles values, the same
approximation (taking the weighted average of the values
for pure elements) was made for the B parameter in the
present work. As will be shown later, this satisfactorily
reproduced the bulk moduli of various ordered phases. The
same approximation was also made for the d parameter due to
the lack of information.

Among the eight Cmin and Cmax, only two Cmin parameters
had effects on the elastic constants of ordered phases and were
given non-default values to better describe those properties. In
binary systems, the density scaling factors (actually the ratio
between those for individual elements) generally affect the
composition dependency of enthalpy of formation or mixing.
Because a reasonable composition dependency of enthalpy of
formation and mixing could be obtained without adjusting the
ratio, in the present study the atomic electron density scaling
factor ρ0 values for Fe and Al were assumed to be the same,
i.e. the ratio is 1. Table 2 shows the finally determined MEAM
parameters for the Fe–Al binary system.

3. Calculation of physical properties

In this section, fundamental physical properties of the Fe–Al
alloys will be calculated using the present MEAM potentials
shown in tables 1 and 2 and compared with experimental
information or other calculations. The 2NN MEAM formalism
includes up to second nearest-neighbor interactions. Therefore,
the radial cutoff distance during atomistic simulations should
be at least larger than the second nearest-neighbor distance in
the structures under consideration. All calculations presented
here are performed with a radial cutoff distance of 4.0 Å, which
is between the second and third nearest-neighbor distances of
solid phases. If not designated, all MEAM values shown in this
section are those calculated at 0 K.

The properties calculated in the present study can be
divided into three groups. One group is the fundamental

physical properties: lattice parameters, elastic constants and
enthalpy of formation or mixing. Those properties are used for
parameter optimization. The comparison between calculation
and experimental values shows the quality of fitting. The
second group is those properties with experimental information
or other calculation values not used for parameter optimization.
The B2/A2 order–disorder transition temperature and various
point defect formation energies are in this group. Through
comparisons between the present calculation and experimental
data or other calculations, the transferability of the present
potential and its applicability to the investigation of defect
formation behavior of ordered Fe–Al alloys can be evaluated.
The final group is the properties where only qualitative or no
information is available, and includes the effect of Al on the
SFE in fcc Fe, the segregation of Al atoms on grain boundaries
of bcc Fe and the binding energy between dislocation and an
Al solute atom. The calculation of those properties provides
information which is helpful for understanding the effect of
Al on the mechanical and deformational behavior of Fe–Al
alloys. The agreement between the present calculation and
quantitative or qualitative experimental information on the
second and third groups of properties will also demonstrate
the applicability of the present atomistic simulation approach
to the investigation of the defect formation and deformation
behavior of Fe–Al alloys.

As mentioned above, the first property calculated using the
present MEAM potential is the lattice parameters of ordered
B2-FeAl, DO3-Fe3Al and L12-Fe3Al compounds (table 3) and
the disordered bcc solid solution (figure 1, where ‘x’ represents
the mole fraction of Al). The calculated bulk modulus and
elastic constants of the ordered compounds are compared with
experimental data or other calculations in table 4. The enthalpy
of formation of ordered compounds and solid solution phases,
and the enthalpy of mixing of liquid were also calculated
and are compared with relevant experimental data or other
calculations in table 5 and figures 2 and 3, respectively.

As shown in tables 3–5 and figures 1–3, the present
calculation generally well reproduces the target property values
used for parameter optimization. The lattice parameters of the
ordered B2, DO3 and L12 compounds are reproduced within
a 1% error and the deviations from those of B2 and DO3

compounds have the opposite sign, which indicates that any
further improvement would not be obtained by adjusting the re

value. However, the quality of the calculated elastic constants
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Table 3. Calculated lattice parameter of B2, DO3 and L12 ordered Fe–Al phases in comparison with experimental data and other calculations.
The unit of the lattice parameter is Å.

Phase MEAM Expta First-principles calculations Empirical potentials

B2-FeAl 2.919 2.90 2.879b, 2.87c, 2.900d, 2.89e, 2.87f, 2.83g, 2.889h 2.91k, 2.90l, 3.031m

DO3-Fe3Al 2.879 2.89 2.892b, 2.88c, 2.850d, 2.885e, 2.895f, 2.889h, 2.865i, 2.889j 2.866l, 2.952m

L12-Fe3Al 3.669 — 3.669b, 3.65c, 3.645i, 3.657j

a Reference [23]. b Reference [36]. c Reference [37]. d Reference [38]. e Reference [39]. f Reference [40].
g Reference [41]. h Reference [42]. i Reference [43]. j Reference [44]. k Reference [11]. l Reference [12].
m Reference [13].

Figure 1. Calculated lattice parameter of disordered bcc Fe–Al
alloys, in comparison with experimental data [24–26].

Figure 2. Calculated enthalpy of formation of disordered and DO3,
B2 ordered Fe–Al phases, in comparison with experimental
data [28–30], first-principles calculations [36, 37, 39, 40, 42, 43] and
calculations using empirical potentials [11–13].

is relatively worse, especially the C44 values. It should be
mentioned here that actually the calculated C44 values (and
all other elastic constants) could be increased toward a better
agreement with experimental data by simply increasing the B
parameter value which was given a default value. However,
the present authors wanted to show that a reasonable result
(a slightly smaller B value for B2 and slightly larger value
for DO3 when compared to experimental data) is obtained by
using only the default B value. If one needs a potential that
yields a better agreement with C44 values, one can increase
the B value by a few per cent.

Figure 3. Calculated enthalpy of mixing of the Fe–Al liquid alloys,
in comparison with experimental data [31, 32].

It is also shown that the thermodynamic properties
(enthalpy of formation and enthalpy of mixing) are reproduced
well within the scattering range of experimental or first-
principles data. Most of the first-principles calculations have
predicted the L12 ordered structure to be more stable than the
DO3 ordered structure contrary to experimental observation,
while the present calculation predicts the relative stability of
the two structures correctly in agreement with recent first-
principles calculations [43, 44].

It has been shown that the MEAM potential parameters are
optimized satisfactorily, yielding generally good agreements
with target property values. The transferability of the
present potential will now be examined by calculating other
known properties not used during the parameter optimization
procedure, i.e. the order–disorder transition temperature and
point defect energy, and comparing with relevant experimental
data or other calculations.

As mentioned in the previous section, A2/B2 and
A2/B2/DO3 transitions occur over 20 at.% Al [33]. Transition
temperatures can be estimated by monitoring the temperature
dependency of the long-range order (LRO) parameter for
samples equilibrated using a canonical ensemble Monte Carlo
(MC) simulation. For the MC simulation in the present work
alloy samples with 2000 atoms (10 × 10 × 10 unit cells)
were prepared for several different alloy compositions. The
three-dimensional periodic boundary condition was applied
during the MC runs, allowing changes of sample size and
thermal vibration of lattice atoms. The elementary step of MC
simulation is as follows. Two atoms are randomly chosen and

5
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Table 4. Calculated bulk modulus and elastic constants of B2, DO3 and L12 ordered Fe–Al phases in comparison with experimental data and
other calculations. In each item, the first line is for B2-FeAl, the second for DO3 and the third for L12 Fe3Al. The unit of bulk modulus and
elastic constant is 1012 dyne cm−2.

MEAM Expta First-principles calculations Empirical potentials

Bulk modulus 1.246 1.361 1.72b, 1.56c, 1.55d

1.489 1.441 1.59b, 1.70c, 1.51d, 1.39e, 1.74f

1.496 — 1.85b, 1.68d, 1.43e, 1.68f

C11 1.527 1.811 2.70b, 1.833c, 2.90g 1.413h, 1.920i, 2.90j

2.225 1.710 1.64b, 1.592c, 1.512h, 2.62j

1.743 — 1.84b

C12 1.106 1.137 1.05b, 1.070c, 1.30g 1.354h, 1.200i, 1.30j

1.121 1.306 1.27b, 1.375c, 1.427h, 1.56j

1.372 — 1.45b

C44 0.780 1.271 1.52b, 1.070c, 1.65g 1.106h, 1.168i, 1.65j

1.091 1.317 1.42b, 1.375c, 1.261h, 1.62j

0.760 — 1.60b

a Reference [27]. b Reference [37]. c Reference [38]. d Reference [36]. e Reference [44].
f Reference [43]. g Reference [41]. h Reference [13]. i Reference [11]. j Reference [12].

Table 5. Calculated enthalpy of formation of ordered Fe–Al phases in comparison with other calculations. The unit of the enthalpy is
kJ/gram-atom.

Phase MEAM First-principles calculations Empirical potentials

B2-FeAl −28.75 −29.98a, −26.68b, −36.56c, −35.52d, −34.44e −32.75g, −25.04h, −10.21i

DO3-Fe3Al −19.86 −19.36a, −17.85b, −21.35c, −21.12d, −20.97e, −20.13f −24.08g, −21.43h, −7.080i

L12-Fe3Al −17.34 −21.38a, −19.19b, −18.78f

a Reference [36]. b Reference [37]. c Reference [39]. d Reference [40]. e Reference [42]. f Reference [43].
g Reference [11]. h Reference [12]. i Reference [13].

interchanged. Small random displacements in the positions of
the two atoms are also attempted. The energy change before
and after the trial of transition, �E , is calculated and used to
evaluate the transition probability P:

P = exp

(
− �E

kBT

)
, (7)

where
�E = Eafter − Ebefore. (8)

This simulation gives an equilibrium atomic configuration for
a given Al content, temperature and pressure (zero external
pressure). Order–disorder transition temperatures in individual
alloys are determined by performing the MC simulation in a
temperature range across estimated transition temperatures and
identifying the temperature where an abrupt change of LRO
parameter occurs. In the present work, a DO3 LRO parameter
was defined as

LRO = rFe − xFe

1 − xFe
, (9)

where rFe is the fraction of Fe atoms in the Fe sites of a
perfectly ordered DO3 structure. By this, the LRO of a
perfectly ordered DO3 structure becomes 1 and that of a B2
ordered structure becomes 0.33 for all compositions lower than
50 at.% Al, which means both DO3 and B2 ordering can be
identified using a single LRO parameter. Figure 4 shows LRO
versus temperature curves for samples with 25, 35 and 45 at.%
Al, obtained by increasing the temperature by 200 K (100 K
in the transition temperature region) with 10 000 Monte Carlo
steps at each temperature. According to the present potential,

Table 6. Calculated order–disorder transition temperatures with Al
content, in comparison with experimental data. The unit of the
temperature is K.

0.25 0.35 0.45

DO3 → B2 → A2 B2 → A2 B2 → A2
Expt [33] 850–1050 1450 1600
MEAM 1100–1200a 1800–1900 1900–2000

a For DO3 → A2 transition.

the Fe–25 at.% Al alloy is DO3 ordered at low temperature
while the 35 at.% and 45 at.% Al alloys are B2 ordered.
Because exact calculation of the transition temperatures was
not the purpose of the present study, the transition temperatures
at individual alloy compositions were roughly obtained in a
form of a range between the two temperatures where the
decrease of LRO starts and ends, and are given in table 6. The
calculated transition temperature ranges are generally higher
than experimental data. This is partly because the disordering
transition was observed during heating (10 000 MCS may not
be enough to obtained full equilibrium at each temperature)
and partly because of overestimation of the present MEAM for
the melting point of pure Fe by about 250 K [15]. It should also
be mentioned here that actually DO3 → B2 → A2 disordering
was expected for the Fe–25 at.% Al alloy. However, probably
because of the large temperature interval (100 K) used in the
MC simulation, the B2 ordering could not be detected in the
present study.

Even though the transition temperatures are generally
overestimated, it has been shown that the present interatomic
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Table 7. Calculated point defect formation energy in the B2-FeAl phase, in comparison with experimental data or other calculations. The
point defects considered are vacancy and anti-site formation in Fe and Al site. The unit of the energy is eV.

MEAM Expta,b Vailhec Bessond Shue Kellouf Fug Fähnleh Bakkeri

Evac,Al
f 1.51 1.28 2.8 1.78 4.70 4.00 3.46 1.49

Evac,Fe
f 1.29 ∼1.0 1.26 0.8 1.06 1.47 0.97 1.06 0.65

E anti,Al
f 0.59 −0.75 0.78 0.27 0.75 0.95 0.99 0.95

E anti,Fe
f 0.59 1.87 0.76 0.50 1.09 1.03 0.99 1.03

a Reference [34]. b Reference [35]. c Reference [11], embedded-atom method. d Reference [12],
embedded-atom method. e Reference [13], modified analytic embedded-atom method.
f Reference [45], first-principles calculation. g Reference [46], first-principles calculation.
h Reference [47], first-principles calculation. i Reference [50], Miedema’s semi-empirical model.

Figure 4. Temperature dependence of the long-range order (LRO)
parameter for bcc Fe–Al alloys with 25, 35 and 45 at.% Al, obtained
from a Monte Carlo simulation. The LRO value of 1 corresponds to a
perfect DO3 ordering while a value of 0.33 corresponds to B2
ordering at individual compositions.

potential certainly reproduces the order/disorder transitions
that occurs in the bcc Fe–Al alloys reasonably well. Now,
the calculation was extended to the defect (vacancy or anti-
site atom) formation energy in a perfect B2 ordered structure.
Defect formation energy is defined as the energy difference
between a system containing a defect and a perfect system with
the same number of atoms:

Edefect
f = Edefect(NFe + NAl) − (NFeμFe + NAlμAl). (10)

Edefect is the potential energy per atom of the system containing
a defect, NFe and NAl the number of individual atoms, and μFe,
μAl the atomic chemical potentials of individual elements. The
atomic chemical potential can be calculated by a numerical
differentiation of the energy versus composition curve at 0 K.
According to our calculation, the atomic chemical potential of
Fe and Al is −4.722 and −3.524, respectively. The calculated
vacancy and anti-site formation energies in the Fe and Al
sites are listed in table 7, in comparison with experimental
data and other calculations. The experimental information is
available only for vacancy formation energy in the Fe site.
The scattering among various calculations is large. However,
all show qualitative agreement in that vacancy formation in
Al sites is energetically most unfavorable, and the present
calculations are in the scattering range.

Based on the calculations for the order–disorder transition
and point defect energy in the B2 ordered structure, it is

believed that various defect evolutions in high Al (non-
stoichiometric B2 ordered) Fe–Al alloys can be predicted with
a reasonable accuracy using the atomistic approach. However,
the eventual purpose of the atomistic studies is to utilize the
atomistic simulation technique for understanding the effect of
Al and various defects on the deformation behavior of steels.
For this, it is further necessary to know the formation behavior
of other defects that have an effect on the deformation behavior
and interactions between them. In the present study, the effect
of Al content on the stacking fault energy of fcc Fe, which
is regarded to be closely related to twin formation, the grain
boundary segregation of Al atoms in bcc Fe and the interaction
between an Al atom and dislocations, are selected.

The stacking fault energy is calculated by comparing the
total energy a faulted sample involving a stacking fault to
that of a perfect sample with the same number of atoms. A
perfect sample of the fcc Fe was prepared by depositing {111}
atomic layers of a size of about 6.4 × 6.6 nm2 to a height
of about 22 nm. The number of atoms was about 79 000.
Al atoms up to 20 at.% were randomly distributed. A single
layer intrinsic stacking fault was created by removing one
atomic layer from the perfect fcc stacking of {111} planes. The
total energy of the perfect and faulted samples was calculated
by a molecular statics (MS) simulation applying a three-
dimensional periodic boundary condition and allowing full
relaxations of individual atoms, and also the sample dimension
in all directions. Figure 5 shows the calculated effect of
addition of Al to the intrinsic SFE in fcc Fe. The SFE in pure
fcc Fe is set to be zero. According to the present calculation,
the SFE of fcc Fe monotonically increases with increasing Al
content, in qualitative agreement with experimental perception.

To investigate the tendency of Al atoms on grain
boundaries to segregate, the above-mentioned MC simulation
that has been used to investigate the order/disorder transition
was performed again over alloy samples (of about 6 ×
6 × (10–13) nm3 with 35 000–37 000 atoms) involving an
arbitrarily selected tilt or twist boundary. After the MC
runs, the concentration profile of Al across the boundary was
calculated. The results obtained for bcc Fe–20 at.% Al alloys
at 873 K are plotted in figures 6(a) and (b), in comparison
with initial concentration profiles. When compared to initial
concentration profiles, the segregation on the grain boundaries
looks small, especially on the tilt grain boundary that has a
relatively compact atomic structure. The present authors are
not aware of any quantitative experimental information for
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Figure 5. Calculated effect of Al content on the intrinsic stacking
fault energy of fcc Fe. The stacking fault energy of pure Fe is set to
zero.

Table 8. Calculated binding energy between an edge or screw
dislocation and an Al atom in bcc Fe. The unit of the energy is eV.

Edge Screw

MEAM 0.16 0.14

the grain boundary segregation of Al atoms in steels. The
present atomistic simulation study predicts a small segregation
tendency of Al atoms on the grain boundaries in bcc Fe.
Further simulation for a wider range of grain boundaries and
temperatures would be necessary to provide more quantitative
information.

Finally, the binding energy between an edge or a screw
dislocation and an Al atom in bcc Fe was investigated using the
present atomistic approach to estimate the effect of Al atoms on
the movement of dislocations. The binding energy between a
dislocation and a solute atom is defined as the energy difference
between when a solute atom is located in the energetically most
favorable site close to the dislocation and when it is far away
from the dislocation. A positive value of the binding energy
means that the two defects, a dislocation and a solute atom,
are attractive. The calculated binding energies with the two
different types of dislocation (edge and screw) are positive
and of a similar size, as shown in table 8, which indicates a
possibility of solution hardening due to the Al solute atoms in
steels even though no quantitative experimental information is
known.

For the moment, direct comparisons of the present
calculations for the SFE, grain boundary segregation and
interaction between dislocations and Al atoms with relevant
experimental information and evaluation of the reliability
of the present calculations may be difficult. This is
because corresponding experimental information is not known
quantitatively, and even when some qualitative information is
available it is for multicomponent steels instead of the Fe–
Al binary alloys. However, all the calculated properties are
in a qualitative agreement with well accepted perceptions,
and at least mutual comparisons for the effect on the SFE,
grain boundary segregation tendency and interaction with
dislocations between different alloying elements in steels can

(a)

(b)

Figure 6. Concentration profile of Al across (a) tilt and (b) twist
boundaries in bcc Fe–20 at.% Al alloys, obtained from a Monte
Carlo simulation.

be easily made. The strongest advantage of the present MEAM
approach is that all the above-mentioned properties can be
investigated for practical Fe–Mn–Al–C multicomponent alloys
since the Fe–C and Fe–Mn potentials are already available and
can be easily combined into the quaternary potential.

4. Conclusion

It has been shown that the present 2NN MEAM interatomic
potential for the Fe–Al system can reproduce structural, elastic
and thermodynamic properties of Fe–Al binary alloys in
generally good agreement with experimental information. The
DO3 or B2 ordering, point defect formation, stacking fault
energy, grain boundary segregation and interactions between
dislocations and solute atom are also reasonably reproduced.
The present potential can be easily extended to more practical
Fe–Al–Mn–C alloy system, and be applied to atomic level
investigations of various defect formation behaviors and their
effects on the mechanical properties of practical steels as well
as Fe–Al binary alloys.
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[40] Sodré N, Gonzales-Ormeño P G, Petrilli H M and

Schön C G 2009 Calphad 33 576
[41] Fu C L and Yoo M H 1992 Acta Metall. Mater. 40 703
[42] Das G P, Rao B K and Jena P 2002 Phys. Rev. B 66 184203
[43] Kim H 2009 private communication
[44] Kellou A, Grosdidier T, Raulot J M and Aourag H 2008 Phys.

Status Solidi b 245 750
[45] Kellou A, Feraoun H I, Grosdidier T, Coddet C and

Aourag H 2004 Acta Mater. 52 3263
[46] Fu C L, Ye Y-Y, Yoo M H and Ho K M 1993 Phys. Rev. B

48 6712
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